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Abstract

Dimensional analysis of the heat transport through ducts filled with saturated He II is extended to pressurized con-

ditions up to 20bar. Simplified models are also presented for the ease of first order estimation of the GM-transport heat

flux density, the temperature gradient and the limiting heat flux densities by relating calculations to reduced thermo

physical properties, with respect to the properties at the lambda point. The data available show good support for

the dimensionless GM-equation in pressurized He II within data scatter and thermo physical property uncertainty.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Superfluid liquid He II (He4) is considered as a very

unique and efficient coolant for high performance super-

conducting systems [1,2]. Much work has been done to

understand the heat transport properties of He II where

a large body of knowledge of its behavior at low temper-

atures and pressures are available. However, there are

only a few comprehensive data sets available in suitable

form in a particular application area. Therefore, the pur-

pose of the present work is to present a simple set of

functions which permit a quick selection of various sys-

tem options. Empirical formulae are employed to relate

the thermo physical properties to the reduced properties

relative to the properties at lambda points. This leads to

surprisingly simple functions which ease the calculation
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of the heat flux density at a given temperature and pres-

sure. Experimental data are compared favorable with

the dimensional analysis.
2. Laminar transport in zero net mass flow (DT � 0)

At very low temperature difference, between the tem-

perature of the heated end and the temperature of bath,

the normal fluid flow in tubes is described by the Hagen-

Poiseuille equations. One can generalize the laminar

transport of He II with the following equation

Nq ¼ NrT ð1Þ

where Nq = qtnLc/gn = qLc/gnST and NrT ¼ qrPT L3
c=

g2n ¼ q2SrTL3
c=g

2
n. Although the characteristics of the

He II laminar flow are rarely evaluated in practical

applications, its analysis helps to establish the dimen-

sionless numbers which will be used as a basic frame-

work for the analyses in the following sections.
ed.
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Nomenclature

AGM Gorter–Mellink constant (turbulent recipro-

cal viscosity, m s/kg

D diameter, m

f(Tk) a function related to thermodynamic prop-

erties at the lambda point

g(T) a function related to thermodynamic prop-

erties of He II

KGM Universal Gorter–Mellink constant

L length, m

Lc characteristic length, m

Nq dimensionless number related to the heat

flux density

NgradT dimensionless number associated with the

temperature gradient

P pressure, bar

q heat flux density, W/cm2

qL limiting heat flux density, W/cm2

S entropy, J/kgK

Sk entropy at the lambda point, J/kgK

T temperature, K

Tk temperature at the lambda point, K

y(Tk) a function related to thermodynamic prop-

erties at the lambda point

z(tb) a function related to thermodynamic prop-

erties of He II

q density, kg/m3

qn normal fluid density, kg/m3

qs superfluid density, kg/m3

gn normal fluid shear viscosity, kg/ms

gk shear viscosity at the lambda point, kg/ms
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Fig. 1. The reduced viscosity versus the reduced temperature of

He II at different pressures.
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3. Transport at small DT-values (DT � T)

The counter flow of GM-transport in an insulated

duct is usually written as

q ¼ qsST
SjrT j
AGMgn

� �1=3

ð2Þ

(S = entropy per unit mass, gn is the shear viscosity of

the normal fluid). There are two asymptotes for AGM,

one at low temperatures, the other one at high tempera-

tures. Soloski and Frederking [3] demonstrated that at

low temperatures, the macroscopic continuum ap-

proaches led to ðgnAGMÞ�1 ¼ constant ¼ K3
GM, where

KGM is of the order 10(p)1/3. At higher temperatures,

near the lambda temperature (Tk) AGM approaches the

function (q/qs). For both constraints to be satisfied,

the GM-transport property becomes

AGM ¼ K�3
GMðq=qsÞ=gn ð3Þ

Insertion of Eq. (3) into (2) gives

q ¼ KGMqsST
qs

qn

� �
gn
q

� �
S j rT j

� �1=3

ð4Þ

For the ease of estimating the heat flux density and

the temperature gradient for a given GM duct design,

one can use the reduced thermo physical properties for

calculation. The reduced properties are evaluated with

respect to the properties at the lambda point. The rela-

tionship between the reduced shear viscosity and the re-

duced temperature for various pressures is shown in Fig.

1 [4–7]. It is noted that the appearance and the shape of

the reduce viscosity is substantially similar at different

pressures. Eq. (4) can be further simplified so that an

effective thermal conductance can be derived against re-

duced thermal physical properties.
q3

rT
¼ K3

GMq
2
kS

4
kT

3
kgk

� 1� qn

q

� �4 qn

q

� ��1 q
qk

� �2 S
Sk

� �4 T
T k

� �3 g
gk

� �( )

ð5Þ

Apparently, it is easier to evaluate the lambda point

properties and the dimensionless values separately. The

following two functions are defined for the ease of

calculation.

f ðT kÞ ¼ q2
kS

4
kT

3
kgk

� �
ð6Þ
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gðT Þ ¼ 1� qn

q

� �4 qn

q

� ��1 q
qk

� �2 S
Sk

� �4 T
T k

� �3 g
gk

� �
ð7Þ

The effective thermal conductance can then be ex-

pressed as

q3

rT
¼ K3

GMf ðT kÞ � gðT Þ ð8Þ
The f(Tk) function decreases monotonically with the

decrease of pressure. The g(T) function is shown in Fig.

2, it approaches zero at low temperatures and at the

Lambda points. There is again a strong resemblance of

the function throughout the pressure range selected.

The function g(T) is proportional to the apparent ther-

mal conductivity of the He II inside the duct. The behav-

ior predicted by Eq. (5) agrees with data [8].

Fig. 3 presents the results from saturated and pressu-

rized He II [3,8–12]. Eq. (4) may be re-written as [3]

Nq
q
qs

� �
¼ KGM NrT

qs

qn

� �� �1=3
ð9Þ
It is seen that the data in Fig. 3 are correlated satis-

factorily by Eq. (9) within data scatter and property

uncertainty. The KGM data appear to decrease as P is

raised. Fig. 4 shows the GM-constant KGM = KGM(P)

for the data set of Refs. [8,10,11]. However, the depar-

ture from the KGM value of 11.3 for saturated liquid

He II to pressurized liquid He II, up to around 7bar,

is about 10%. The scarcity and the heat flux density data

at higher pressures and the uncertainty of the values of
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Fig. 2. The g(T) function versus the reduc
the shear viscosity makes the deviation of the KGM as

much as 20% from the constant of 11.3 at the highest

pressure of 20bar.
4. Transport at large DT-values

The heat flux density can reach its limiting values for

larger temperature differences. The thermo physical

properties can vary substantially along the length of

the GM-duct. Therefore, the GM-equation must be

integrated from the bath temperature to the lambda

temperature at the pressure of the experiment. The

experimental value of DT was used in the integrated

GM-equation for a duct of length L. For the ease of

integration, reduced properties are integrated against

the reduced temperature t = T/Tk. This equation may

be written as

qLL
1=3¼KGMðq2

kS
4
kT

4
kgkÞ

1=3

�
Z 1

tb

1�qn

q

� �4 qn

q

� ��1 q
qk

� �2 S
Sk

� �4 g
gk

� �
t3dt

( )1=3

ð10Þ

yðT kÞ ¼ ðq2
kS

4
kT

4
kgkÞ

1=3 ð11Þ

zðtbÞ ¼
Z 1

tb

1� qn

q

� �4 qn

q

� ��1 q
qk

� �2 S
Sk

� �4 g
gk

� �
t3 dt

( )1=3

ð12Þ

Eq. (10) reduces to

qLL
1=3 ¼ KGMyðT kÞzðtbÞ ð13Þ
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Fig. 3. The dimensionless heat flux density versus the dimensionless generalized driving force.
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Fig. 5. Limiting heat flux density versus He II bath tempera-

ture. Experimental data are all taken at P = 1bar.
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The function y(Tk) does not vary too much with

changing pressure. The function z(tb), which is

a dimensionless, decreases gradually and monotoni-
cally at lower temperatures. However, it is strongly

dependent on the temperature when the reduced bath

temperature is increased above around 0.8. However,

it does not appear to vary much with the increase of

pressure. As shown in Fig. 5, the limiting heat flux

density calculated by Eq. (13) is in good agreement

with experimental data obtained by several authors

[10,11,13–15].
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5. Conclusion

A simplified model which relates thermo physical

properties of pressurized He II is developed. The rela-

tionship between the heat flux density and the tempera-

ture gradient in a G-M tube under a given pressure can

be determined by the reduced thermo physical properties

with respect to their values at the Lambda point. Based

on this model, the limiting heat flux density can be pre-

dicted with the ease of integration of thermal physical

properties along the GM tubes. The integration values

are also presented graphically so that they can be used

for the first order engineering design of superconducting

magnets in pressurized He II. At higher pressures, larger

than 7bar, the scarcity of data for the shear viscosity gn
creates the uncertainty in KGM. Other information re-

lated the fine adjustment of the power exponent in the

dimensionless representation can be found in another

reference [16].
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